AN EXPEDITIOUS SYNTHESIS OF BIOLOGICALLY IMPORTANT MYO-INOSITOL PHOSPHOROTHIOATES

C.E. Dreef^a, G.W. Mayr^b, J.-P. Jansze^a, H.C.P.F. Roelen^a, G.A. van der Marel^a and J.H. van Boom^a

^aGorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands ^bRuhr University Bochum, Institute for Physiological Chemistry, 4630 Bochum 1, FRG

(Received 2 May 1991)

Abstract: The *myo*-inositol phosphorothioates **6**, **9**, **12** and **17** were readily accessible from properly protected precursors by phosphitylation with *N*,*N*-diisopropyl dibenzyl phosphoramidite (1), subsequent *in situ* sulfurization of the intermediate phosphite triesters with phenacetyl disulfide (3), and removal of all benzyl protecting groups.

It is well-known that myo-inositol 1,4,5-trisphosphate 1.2 is released upon phospholipase C catalyzed cleavage of phosphatidylinositol 4,5-bisphosphate after agonist stimulation of several cell surface receptors. The intracellular second messenger $lns[1,4,5]P_3$ thus released is responsible for the mobilization of sequestered calcium ions from intracellular storage sites. The action of $lns[1,4,5]P_3$ may be terminated via two distinct pathways. The major pathway for $lns[1,4,5]P_3$ inactivation consists of dephosphorylation by a specific 5-phosphatase3 to give $lns[1,4]P_2$, which is further degraded by phosphatases to free myo-inositol. The alternate pathway entails phosphorylation of $lns[1,4,5]P_3$ by a specific 3-kinase4 to give the putative second messenger $lns[1,3,4,5]P_4$ 5. Subsequent hydrolysis of the 5-phosphate affords $lns[1,3,4]P_3$ 6, which is metabolised to myo-inositol and higher myo-inositol phosphates.

The importance of $lns[1,4,5]P_3$ as a calcium mobilizing second messenger has revived a considerable interest^{7,8} in the chemical synthesis of *myo*-inositol phosphates and analogues thereof. The availability of $lns[1,4,5]P_3$ analogues, having a modified phosphate function at a specific position, would be of great value to get a deeper insight into the metabolism of $lns[1,4,5]P_3$. For example, Potter *et alia*⁹⁻¹¹ showed that $lns[1,4,5]P_3$ phosphorothioate analogues, which are metabolically stable to degradation by phosphatases¹², are valuable tools to explore in detail the recognition of $lns[1,4,5]P_3$ by enzymes and receptor sites¹³.

As part of our continuous programme¹⁴⁻¹⁷ directed towards the preparation of *myo*-inositol phosphates and analogues thereof, we now report an expeditious synthesis of some biologically important *myo*-inositol phosphorothioates.

Recent advances in the synthesis of myo-inositol phosphates demonstrated 16,18 that 1H-tetrazole-mediated phosphitylation (see Scheme 1) of properly protected myo-inositol derivatives with the easily accessible reagent N,N-diisopropyl dibenzyl phosphoramidite (1) 19 , followed by oxidation of the intermediate phosphite triesters with tert-butyl hydroperoxide (2) 20 , is a very efficient process. We earlier reported 21 that the sulfurizing reagent phenacetyl disulfide (3) 22 is an excellent alternative for the thioylation by elemental sulfur 23 of phosphite triester intermediates of nucleic acids. The efficacy of the thioylation reaction 24 urged us to employ the sulfurization reagent 3 for the preparation of myo-inositol phosphorothioates.

Phosphitylation (Scheme 2) of racemic 2,3,6-tri-O-benzyl-myo-inositol (4^{16} ; 0.33 mmol) with N,N-diisopropyl dibenzyl phosphoramidite (1; 1.50 mmol) in the presence of 1H-tetrazole (2.00 mmol) in a CH_2CI_2 - CH_3CN mixture (10 mL, 1/1, v/v) afforded, within 15 min at 20°C, the intermediate trisphosphite triester (δ_p 141.49, 141.61 and 142.52 ppm). Monitoring of the in situ sulfurization of the latter phosphite triesters with reagent 3 (3.75 mmol) by ^{31}P -NMR spectroscopy revealed rapid formation (within 15 min) of the corresponding phosphorothioates (δ_p 68.00, 68.72 and 68.99 ppm). After work-up and purification by silica gel column chromatography, homogeneous 2,3,6-tri-O-benzyl-myo-inositol 1,4,5-tris(dibenzylphosphorothioate) (to) was isolated in 88% yield. Removal of the benzyl protecting groups could be realized by reduction with sodium in liquid ammonia and tetrahydrofuran. The crude product was purified by gelfiltration over a Sephacryl column to give to0 myo-inositol 1,4,5-to1,4,5-to1,4,5]to2 analogue 6 showed the presence of only three equally intense phosphorothioate resonances at 49.46, 51.32 and 51.72 ppm.

Scheme 2

The successful preparation of the myo-inositol 1,4,5-tris-phosphorothioate (6) encouraged us to investigate whether the above described methodology was also amenable to the synthesis of the racemic myo-inositol 1,4,5-tris- and 1,3,4,5-tetrakisphosphate analogues 9^{10} and 12, the 5-phosphate of which is replaced by a phosphatase-resistant phosphorothioate function. Thus, phosphitylation of the respective myo-inositol phosphate triesters 7^{26} and 10^{26} (Scheme 2), having a free hydroxyl function at the 5-position, with N,N-diisopropyl dibenzyl phosphoramidite (1) in the presence of 1H-tetrazole, followed by in situ sulfurization of the intermediate phosphite triesters with phenacetyl disulfide (3) for 15 min at 20°C afforded the fully protected myo-inositol 1,4,5-tris- and 1,3,4,5-tetrakisphosphate analogues 8 (δ_p -1.18, -0.97 and 69.26 ppm) and 11 (δ_p -1.09, -0.94, -0.48 and 69.90 ppm) in 92 and 87% yield, respectively. Removal of the benzyl protecting groups from 8 and 11 with sodium in liquid NH₃/THF gave the 5-phosphorothioate analogues 9 (δ_p 0.22, 1.44, 54.67 ppm) and 12 (δ_p 0.13, 0.31, 1.03 and 54.96 ppm) in 72 and 68% yield, respectively.

Finally, we turned our attention towards the synthesis of the 1-phosphorothioate analogue of lns[1,4,5]P₃ (17)¹¹, which is a suitable precursor for the attachment of a fluorescent reporter group¹¹.

Scheme 3

Reaction of racemic 2,3,6-tri-O-benzyl-4,5-di-O-trans-prop-1-enyl-myo-inositol (13)²⁷ (Scheme 3) with N,N-diisopropyl dibenzyl phosphoramidite (1) and subsequent sulfurization of the intermediate phosphite triester with reagent 3 furnished, after mild acidolysis (0.1 N HCl in $CH_2CI_2/MeOH$, 1/1, v/v) of the trans-prop-1-enyl groups at the 4- and 5-position from 14, the 1-phosphorothioate 15 (δ_p 68.06 ppm) in 75% yield. Subsequent, phosphitylation of the phosphorothioate 15 with amidite 1 and oxidation of the intermediate phosphite triesters with tert-butyl hydroperoxide (2)²⁰ gave the fully protected myo-inositol derivative 16 (δ_p -1.42, -1.15 and 68.06 ppm) in 85% yield. Deprotection of 16 with sodium in liquid ammonia resulted in the isolation of myo-inositol 1-phosphorothioate 4,5-bisphosphate (17) (δ_p 1.21, 2.09 and 48.32 ppm) in 74% yield.

Preliminary biological studies indicated that the $lns[1,4,5]P_3$ analogues 6, 9 and 17 were substrates for the purified $lns[1,4,5]P_3$ 3-kinase from bovine brain. On the other hand, the $lns[1,3,4,5]P_4$ analogue 12 acted as a competitive inhibitor of this enzyme. A detailed report on the biological properties of the *myo*-inositol phosphorothioates will be published in due course.

In conclusion, the results presented in this paper clearly demonstrate the usefulness of the phosphitylating reagent 1 in combination with the sulfurization reagent 3 for the preparation of *myo*-inositol phosphates, having phosphorothicate functions at predetermined positions.

Acknowledgement

We wish to thank Dr. W. Schiebler (Hoechst AG, Frankfurt) for helpful discussions.

References and Notes

- 1. Streb, H.; Irvine, R.F.; Berridge, M.J.; Schulz, I. Nature 1983, 306, 67.
- Berridge, M.J.; Irvine, R.F. Nature 1984, 312, 315.
- 3. Storey, D.J.; Shears, S.B.; Kirk, C.J.; Michell, R.H. Nature 1984, 312, 374.
- 4. Irvine, R.F.; Letcher, A.J.; Heslop, J.P.; Berridge, M.J. Nature 1986, 320, 631.
- 5. Batty, I.R.; Nahorski, S.R.; Irvine, R.F. Biochem. J. 1985, 232, 211.
- 6. Irvine, R.F.; Letcher, A.J.; Lander, D.J.; Downes, C.P. Biochem. J. 1984, 223, 237.
- 7. Billington, D.C. Chem. Soc. Rev. 1989, 18, 83.
- 8. Potter, B.V.L. Nat. Prod. Rep. 1990, 7, 1.
- 9. Cooke, A.M.; Gigg, R.; Potter, B.V.L. J. Chem. Soc., Chem. Commun. 1987, 1525.
- 10. Cooke, A.M.; Noble, N.J.; Payne, S.; Gigg, R.; Potter, B.V.L. *J. Chem. Soc., Chem. Commun.* 1989, 269.
- 11. Lampe, D.; Potter, B.V.L. J. Chem. Soc., Chem. Commun. 1990, 1500.
- 12. Hamblin, M.R.; Flora, J.S.; Potter, B.V.L. Biochem. J. 1987, 246, 771.
- 13. Nahorski, S.R.; Potter, B.V.L. Trends Pharmacol. Sci. 1989, 10, 139.
- 14. Dreef, C.E.; Van der Marel, G.A.; Van Boom, J.H. Recl. Trav. Chim. Pays-Bas 1987, 106, 161.
- 15. Dreef, C.E.; Van der Marel, G.A.; Van Boom, J.H. Recl. Trav. Chim. Pays-Bas 1987, 106, 512.
- 16. Dreef, C.E.; Tuinman, R.J.; Elie, C.J.J.; Van der Marel, G.A.; Van Boom, J.H. *Recl. Trav. Chim. Pays-Bas* **1988**, *107*, 395.
- 17. Dreef, C.E.; Tuinman, R.J.; Lefeber, A.W.M.; Elie, C.J.J.; Van der Marel, G.A.; Van Boom, J.H. *Tetrahedron* in press.
- 18. Yu, K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979.
- 19. Bannwarth, W.; Trzeciak, A. Helv. Chim. Acta 1987, 70, 175.
- 20. Engels, J.; Jäger, A. Angew. Chem. Suppl. 1982, 2010.
- 21. Kamer, P.C.J.; Roelen, H.C.P.F.; Van den Elst, H.; Van der Marel, G.A.; Van Boom, J.H. *Tetrahedron Lett.* **1989**, *30*, 6757.
- 22. Frank, R.L.; Blegen, J.R., in: *Organic Syntheses*, Vol. 28, Snyder, H.R. (ed.), John Wiley and Sons, New York, 1948, p. 16.
- 23. Burgers, P.M.J.; Eckstein, F. Tetrahedron Lett. 1978, 3835.
- 24. In our hands the sulfurization of dibenzyl phosphite triesters using elemental sulfur proceeded rather sluggishly.
- 25. All new compounds were fully characterized by ¹H- and ¹³C-NMR as well as combustion analysis.
- 26. Dreef, C.E.; Jansze, J.-P.; Elie, C.J.J.; Van der Marel, G.A.; Van Boom, J.H. manuscript in preparation.
- 27. Dreef, C.E.; Elie, C.J.J.; Hoogerhout, P.; Van der Marel, G.A.; Van Boom, J.H. *Tetrahedron Lett.* 1988, 29, 6513.